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Using a previously discussed cluster mean-field theory we compute the static properties for the
concentrated spin glasses. These are viewed as alloys in which the average cluster size is large. We find for
these large clusters that, with an Ising ferromagnetic intracluster Hamiltonian, the static susceptibility x has
a cusp at the critical temperature T, while the specific heat C, has a rounded maximum at a higher
temperature T,. These results are in accordance with those previously obtained for small antiferromagnetic
clusters and with experiment. It therefore appears that the cluster mean-field model gives results consistent
with the measured thermodynamic properties for both the dilute and concentrated spin-glass regimes.

Recently we proposed a simple cluster mean-
field theory (CMFT)! of the spin-glasses, in which
correlated clusters rather than individual spins
are the basic entity. Starting with a Heisenberg
Hamiltonian with random Gaussian-distributed
exchange interactions between clusters we com-
puted the static properties of a spin glass. It was
found that for a range of average cluster sizes
N (3 <N<6)and for antiferromagnetic intracluster
interactions the CMFT yielded a sharp cusp in the
static susceptibility y at the critical temperature
Tc and a rounded maximum in the specific heat
C,, at a higher temperature T, (which was charac-
teristic of the intracluster exchange energy J,).
Both features are in semiquantitative agreement
with experiment. For ferromagnetic intracluster
interactions we found that agreement with experi-
ment was not as satisfactory as for small clusters
(N<8). The purpose of the present paper is to
show that for large N (as is appropriate to the
more concentrated spin glasses) agreement be-
tween theory and experiment with ferromagnetic

intracluster exchange interaction is again obtained.

Because we were unable to carry out the numeri-
cal calculations with a Heisenberg Hamiltonian for
bigger cluster sizes, we compute here the static
properties using an Ising Hamiltonian, in which
case, we can treat up to 20 spins in the cluster.
We wish to suggest the following physical pic-
ture of the spin glasses over the entire range of
concentration: For the very dilute alloys N is
small and the intracluster interactions are pre-
dominantly antiferromagnetic (arising from the
RKKY (Rudderman-Kittel-Kasuya-Yosida) inter-
action). As the alloy concentration increases N
increases and for both protypical spin glasses
AuFe and CuMn, the intracluster interaction is
predominantly ferromagnetic. [At very high (¢
>50%) Mn concentration in CuMn the sign again
changes? but we will not discuss this limit.] From
this point of view, it then becomes possible to

understand how the cusp in ¥ and the broad maxi-
mum in C,, coexist for all concentrations up to
nearly the percolation limit.

The Ising Hamiltonian
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can be written in an equivalent form
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if we assume that our system has N clusters
with N, spins in each cluster and N=N_ Ng,.
Splitting this sum into the v =X and v #) terms we
have
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where JJ; is the intracluster exchange interactions
and J,, is the near-neighbor randomly distributed
intercluster exchange interactions which now are
taken to be centered around a positive value J,.
Greek indices refer to a particular cluster and
Roman indices to a given spin within that cluster.
Here S,=) ;S;, and S;, =+3. The only assumption
we made in writing Eq. (1) is that the clusters are
far apart compared to their average size, so
Jiy;n can be taken to be J,,, i.e., independent of
the location of the spins within the clusters. As
in the theory of Edwards-Anderson (EA)® the in-
tercluster exchange interactions which are given
by a near-neighbor (nn) Gaussian distribution

P(Jux)=(1/\/§_11J)e'“vk—l1)2/2.12 @)

are treated within a random mean-field theory.
The intracluster interactions are treated exactly.
Using the replica method and following Refs. 1
and 4 we can obtain within the cluster mean-field
theory the free energy and from it the self-con-
sistent equations for the three variational param-
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eters M, g, andm. M =[(S2)],, where[ ], de-
notes a configurational average, is the total spin
of each cluster, ¢=[(S,)2],is analogous to the
usual EA spin-glass order parameter and m
=[(S,)]. is the long-range ferromagnetic order
parameter which is zero in the spin-glass and
paramagnetic phases. We find that the free ener-
gy per cluster is given by®
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where
-H = Z;Jlojsiusiu
+JVg S,x+3BJT*(M - q)SZ. (4)

Here f=zl/2J, with z the number of cluster nn of
a given cluster and B=(kT)"!. The self-consis-
tent equations for the variational parameters are
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where Z =Tre 84", Note that from Eq. (5) we ob-
tain a temperature-dependent cluster moment M ;
at temperatures high compared to the intracluster
exchange interactions M — $NS(S+1) where S=3 is
the spin of a single impurity atom. At T -0 the
cluster moment M has its ground state value (3 or
0 for perfectly compensated antiferromagnets and
N2S?2 for ferromagnets). Solving Egs. (5) and (6)
analytically near 7T, (for the spin-glass-paramag-
netic phase), we find that the critical temperature
T, is given by a self-consistent equation

kT./Jo=RM, , (M

where R =J/J, and M, is the value of the moment
at T,. The phase diagram is very similar to that
found by Sheerington and Kirkpatrick.®

The static susceptibility x(7)° is given by

X(T) =xo(T)/[1 = Tyxo(T)] , (8)

where yo(T) = (M- q)g®ui is the result for J, =0
and J, =2zJ,. For J,<J the effect of J, # 0 is to en-
hance the susceptibility in the spin-glass phase.
Because of the temperature dependence of M, x(T')
will differ slightly from its value as obtained in the
EA mean-field theory.

The specific heat per cluster C,, is given by

Cm=cin':'ex+cin’::a (9)

where the intercluster contribution to the specific
heat is
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and the intracluster contribution is given by
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The intercluster term gives a cusplike contribu-
tion at T, to C,, similar to that found in the EA
mean-field theory. While the intracluster contri-
bution has a rounded maximum at a higher tem-
perature 7,. The specific heat C,, is independent
of the J,, since'we are in the spin-glass phase
where the long-range ferromagnetic parameter m
vanishes.

Because we use an Ising Hamiltonian, it is pos-
sible to solve Egs. (5) and (6) numerically for
more intracluster spins (up to 20) than could be
done for a Heisenberg model. In this analysis we
used 15 spins in a closed configuration (5x3).
While in a real spin glass the clusters are not
compact but extended, this does not alter the es-
sential conclusions. For the intracluster interac-
tions we consider two cases: First an nn ferro-
magnetic interaction with a characteristic ex-
change J,; in the second case an additional next-
nearest-neighbor (nnn) interaction of strength
—-0.5J, is also included. The latter is a crude rep-
resentation of the indirect RKKY interaction be-
tween the nnn spins. The ratio of the exchange
constant R =J/J, =0.004 was chosen so to reduce
approximately the experimentally observed ratio
for T./T,.

In Fig. 1 are shown the normalized temperature

N=I5
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FIG.1l. Temperature dependences of the cluster mo-
ment M(T), order parameter ¢(7), specific heat per
spin C,,, and the susceptibility x(7). The normalized
static susceptibility x(7)/x((T,) is plotted for J;/J,
=0.003, 0.002, 0.0, from top to bottom. The ground-
state spin configuration is shown,
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FIG. 2. Temperature dependences of the M(T), ¢(T)
the specific heat per spin C,,, and the susceptibility
x(T)/xy(T,) for the same parameter as in Fig. 1 except
that a nnn antiferromagnetic between spins within the
clusters has been included. The ground-state spin con-
figuration is also shown.

dependence for M, q,x(T), and C,, for the first
case of nn intracluster ferromagnetic coupling.
The order parameter g decreases nearly linearly
as a function of increasing temperature as in the
EA model. The specific heat has a rounded maxi-
mum at a temperature T,> T, while at T, there
remains a small feature which we expect to be
washed out by fluctuation effects. Note that the
maximum in the specific heat is not so broad as
in our previous analysis® since we have an Ising
Hamiltonian.” The susceptibility has a cusp at T,
which is sharper for J, nonzero, similar to that
found in EA mean-field theory. For concentrated
spin glasses we expect J,#0. This leads to a
sharpening in x(7) which compares well with ex-
perimental results® for AuFe.

In Fig. 2 are shown similar results after includ-
ing both an nn ferromagnetic and nnn antiferro-
magnetic intracluster coupling. Because of the nnn

coupling M decreases more rapidly with tempera-

ture. The susceptibility x(T) still has a cusp at
T, but decreases more rapidly above T, because
of the M dependence on temperature. The specific
heat has, again, a rounded maximum at a higher

temperature than 7., while there is almost no
structure at T,. It should be noted that Riess®

has found results similrr to those plotted here
using a Green’s function decoupling technique
which includes fluctuation effects. These fluctua-
tions play a role similar to that of the intracluster
interactions.

From the above we derive the following conclu-
sions: (i) The features pertaining to thermody-
namic properties we observed for the small anti-
ferromagnetic clusters apply also to the micto-
magnetic regime in which the clusters are con-
siderably larger. (ii) With the CMFT we can
explain how the cusp in y and the broad maximum
in C,, coexist for all the concentrations up to near-
ly the percolation limit. From our computer cal-
culations for small antiferromagnetic clusters
(N <6) we obtain a sharp cusp in x(T) at T, as
well as a broad maximum in C,, at a higher tem-
perature 7,. As the number of spins N in the clus-
ter increases (N = 12) the ferromagnetic clusters
also yield a sharp cusp in x(T) and broad maxi-
mum in C,. For large antiferromagnetic clusters
(N=12) we find that the cusp in x at T, is washed
out. This arises from the unusually large tem-
perature dependence® of M which increases from
its ground-state value to its infinite temperature
result $NS(S+1). However, it is important to
note that for all large ferromagnetic clusters,
this difficulty does not occur and x(T') always has
a cusp at T.. This is a consequence of the fact
that below T, M is almost temperature indepen-
dent (it is almost constant) because of the small
value of R =J /J,, which is needed to fit the specif-
ic heat, in particular the ratio TC/TO. These con-
clusions are not altered, even when a nnn antifer-
romagnetic interaction is included.
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